Telegram Group & Telegram Channel
Какие шаги вы бы предприняли для предобработки данных перед обучением модели, и почему эти шаги важны?

👣 Нормализация или стандартизация числовых признаков. Многие алгоритмы машинного обучения работают лучше, когда числовые признаки имеют одинаковый масштаб.
👣 Кодирование категориальных переменных. Большинство алгоритмов машинного обучения требуют числовые данные на вход.
👣 Удаление признаков с высокой корреляцией. Они могут привести к проблемам в некоторых моделях, например в линейной регрессии.
👣 Применение PCA для уменьшения размерности данных. Здесь следует оценивать каждый конкретный случай.
👣 Заполнение пропущенных значений. Они могут исказить данные.
👣 Создание новых признаков (feature engineering). Это может улучшить производительность модели, особенно если новые признаки содержат важную информацию для задачи.



tg-me.com/ds_interview_lib/89
Create:
Last Update:

Какие шаги вы бы предприняли для предобработки данных перед обучением модели, и почему эти шаги важны?

👣 Нормализация или стандартизация числовых признаков. Многие алгоритмы машинного обучения работают лучше, когда числовые признаки имеют одинаковый масштаб.
👣 Кодирование категориальных переменных. Большинство алгоритмов машинного обучения требуют числовые данные на вход.
👣 Удаление признаков с высокой корреляцией. Они могут привести к проблемам в некоторых моделях, например в линейной регрессии.
👣 Применение PCA для уменьшения размерности данных. Здесь следует оценивать каждый конкретный случай.
👣 Заполнение пропущенных значений. Они могут исказить данные.
👣 Создание новых признаков (feature engineering). Это может улучшить производительность модели, особенно если новые признаки содержат важную информацию для задачи.

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/89

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

The S&P 500 slumped 1.8% on Monday and Tuesday, thanks to China Evergrande, the Chinese property company that looks like it is ready to default on its more-than $300 billion in debt. Cries of the next Lehman Brothers—or maybe the next Silverado?—echoed through the canyons of Wall Street as investors prepared for the worst.

The lead from Wall Street offers little clarity as the major averages opened lower on Friday and then bounced back and forth across the unchanged line, finally finishing mixed and little changed.The Dow added 33.18 points or 0.10 percent to finish at 34,798.00, while the NASDAQ eased 4.54 points or 0.03 percent to close at 15,047.70 and the S&P 500 rose 6.50 points or 0.15 percent to end at 4,455.48. For the week, the Dow rose 0.6 percent, the NASDAQ added 0.1 percent and the S&P gained 0.5 percent.The lackluster performance on Wall Street came on uncertainty about the outlook for the markets following recent volatility.

Библиотека собеса по Data Science | вопросы с собеседований from vn


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA